

Question Answering Systems

Reinforcement learning in QA

Rishiraj Saha Roy

Max Planck Institute for Informatics, Germany

Question of the day

How can we use reinforcement learning to improve QA systems?

You'll find this covered in

Ask the Right Questions: Active Question Reformulation with Reinforcement Learning

- Buck et al.
- ICLR 2018
- https://openreview.net/pdf?id=S1CChZ-CZ
- Go for a Walk and Arrive at the Answer: Reasoning over Paths in Knowledge Bases using Reinforcement Learning
 - Das et al.
 - ICLR 2018
 - https://openreview.net/pdf?id=Syg-YfWCW

Learning in QA

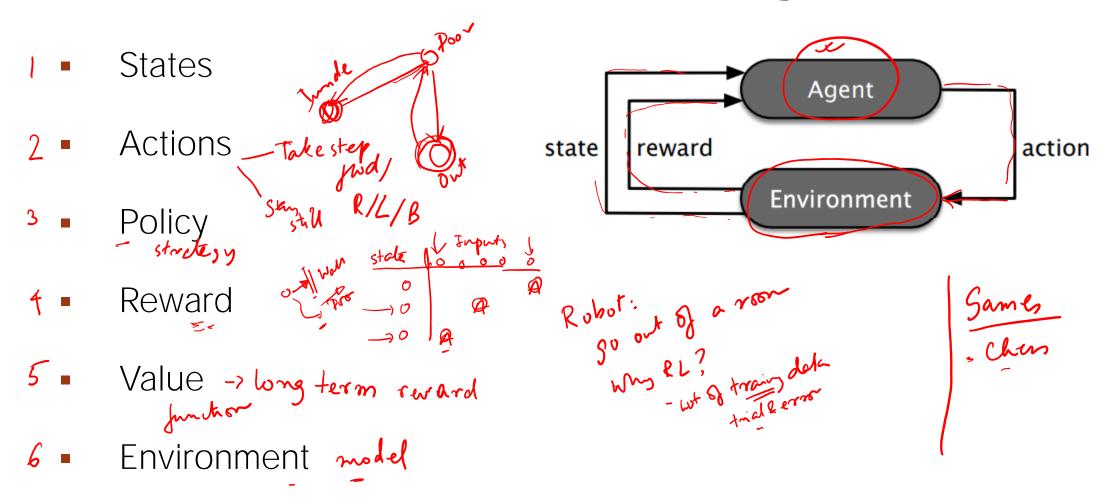
- Unsupervised/weakly supervised learning
 - QUEST, PARALEX, ... Parichalant Hory 2002
- 2 Supervised learning
 - AQQU, STAGG, SEMPRE, ...
- Reinforcement learning: Why?
 - AQA, MINERVA, ...

Athre BA

-0.121 Shot labels 187 SL

model

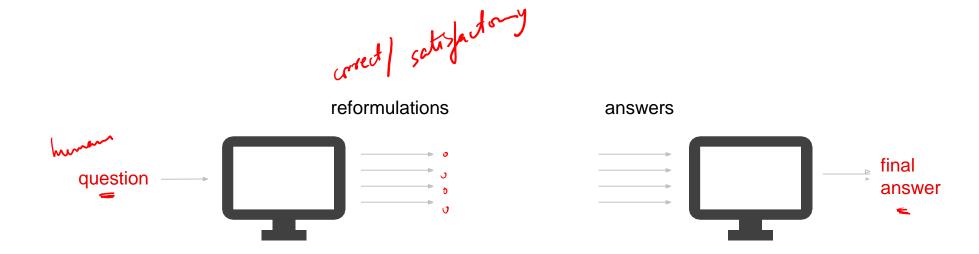
Reinforcement learning: Basics



Research paper 1

Ask the Right Questions: Active Question Reformulation with Reinforcement Learning

Basic idea



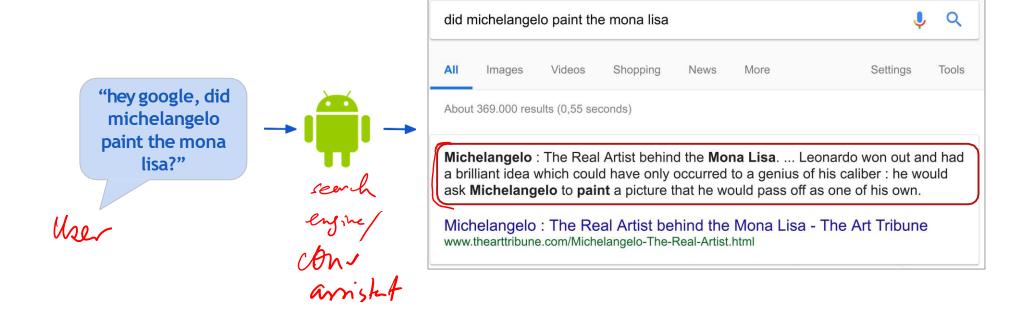
- Train an agent that learns to ask 'optimized' questions
- Machine learns a non-trivial, non-human, but interesting policy
- First step towards an interactive language agent

A senerate new question

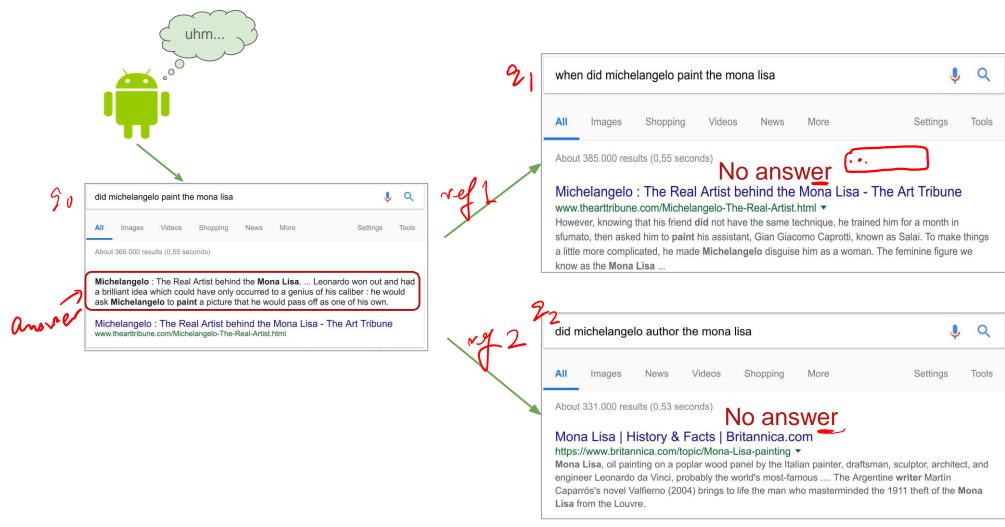
Thanks to Christian Buck for the slides

Intelligent language agent for QA

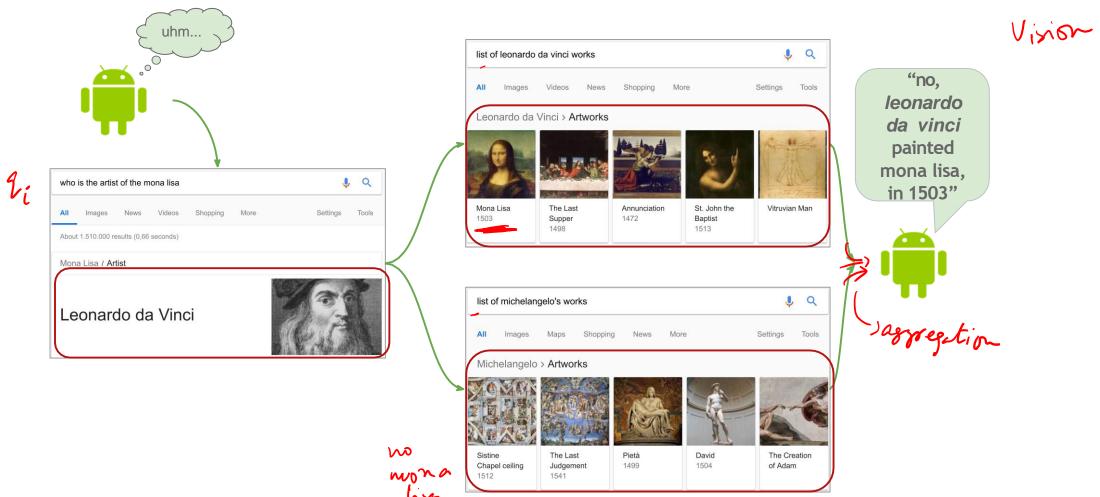
Vision-



Intelligent language agent for QA

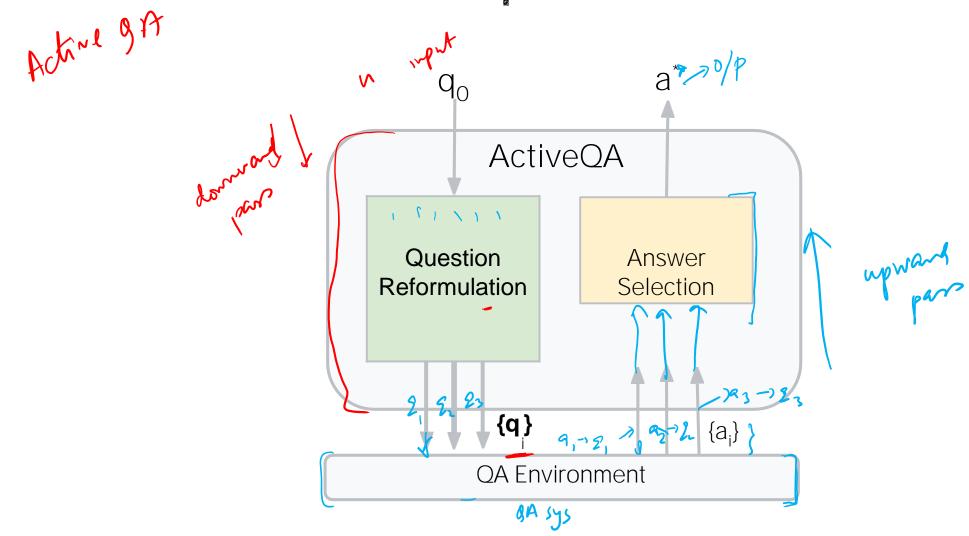


Intelligent language agent for QA

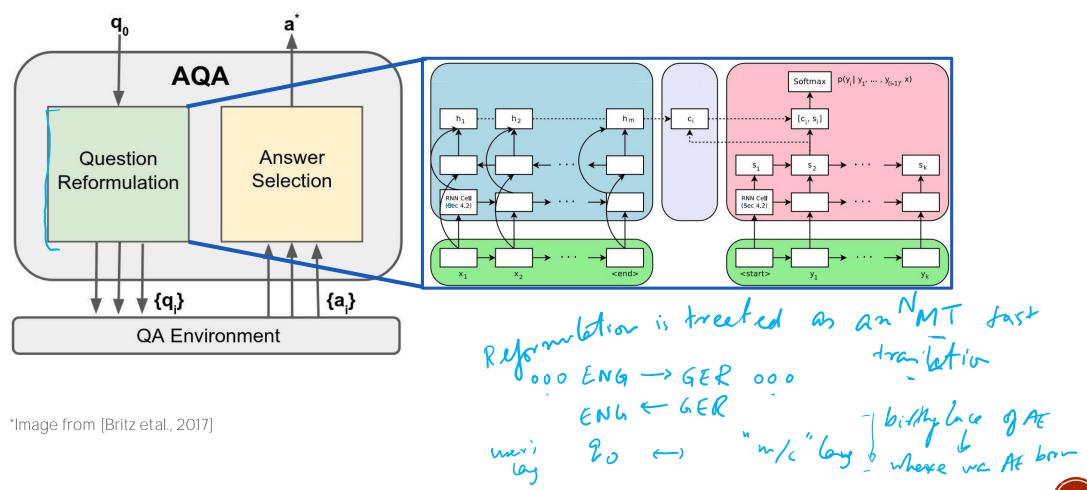


07 July 2020

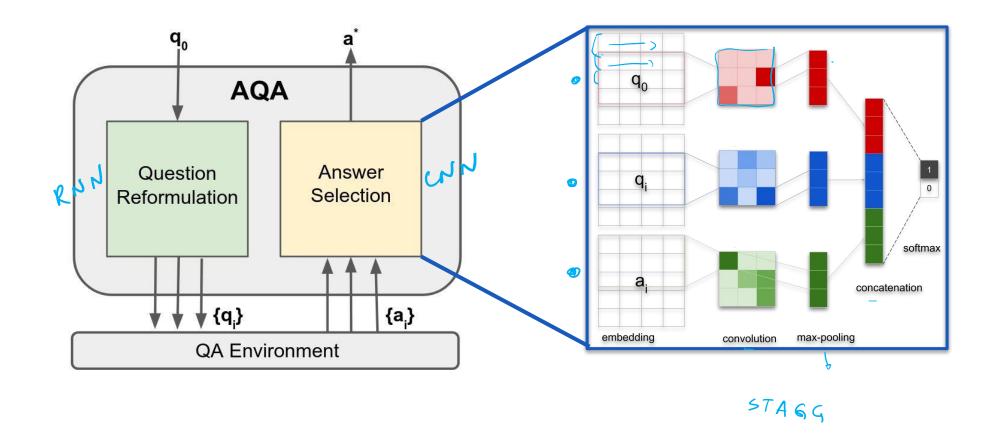
AQA: Active question answering



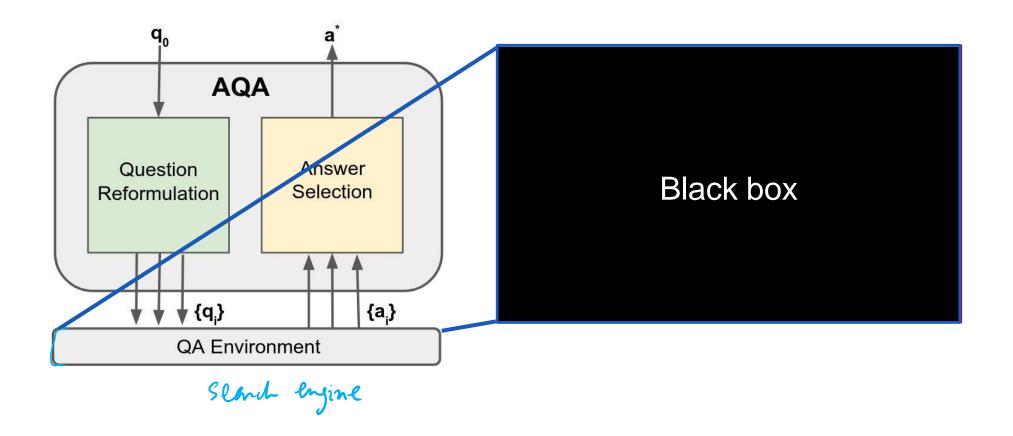
Active QA: Sequence-to-sequence



Active QA: Answer selection



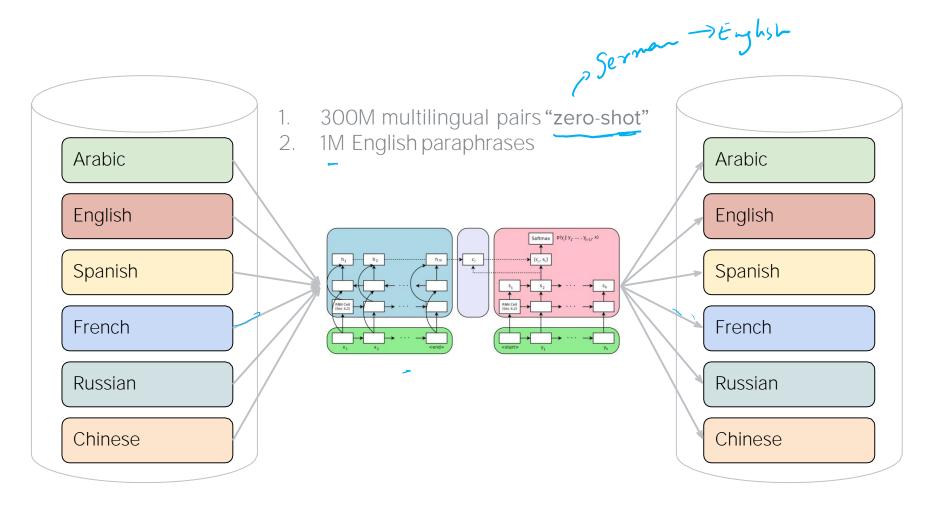
Active QA: Answer selection



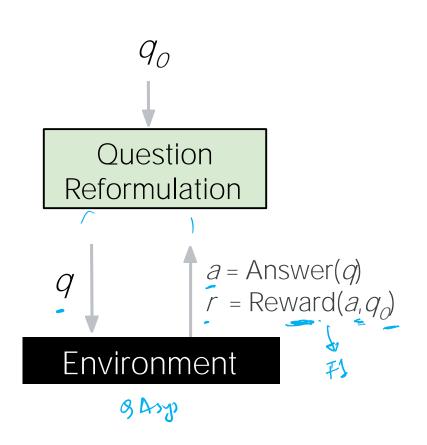
Training

- Supervised paraphrasing
- Question reformulation with reinforcement learning
- Answer selection

Training 1: Initialization with supervised paraphrasing model



Training 2: Reformulation model



policy network policy

Use policy gradient to maximize expected reward:

REINFORCE W. Vhami 1992 W. Vhami 2 Pay 1991

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s, \theta)$

Algorithm parameter: step size $\alpha > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to 0)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, 1, ..., T - 1:

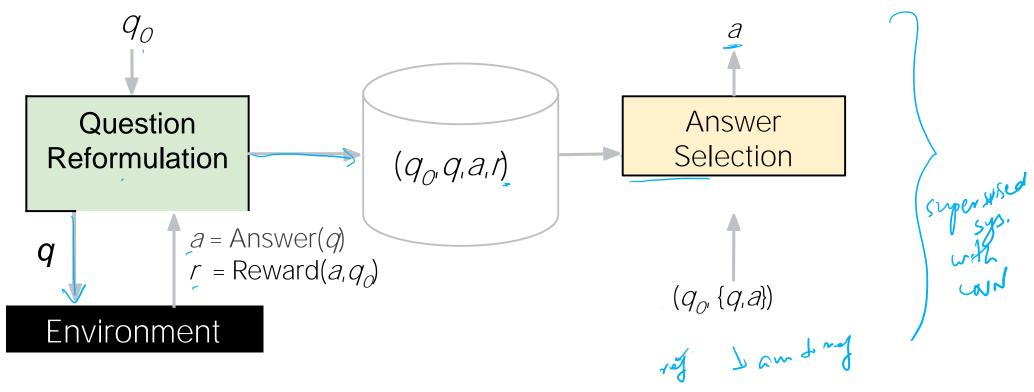
$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \boldsymbol{\theta})$$

$$(G_t)$$

Training 3: Answer selection

Supervised training on tuples scraped during reformulator training



SearchQA: Reading comprehension

[panaya/ wutest

twive

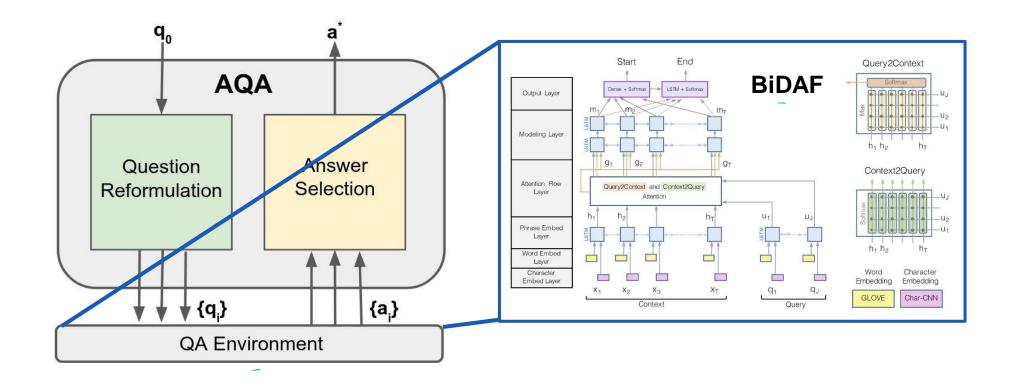
Question (J! *clue*): "Highway 71 gets you to America's deepest gorge, Hells Canyon, & this river that flows through it"

Answer: the Snake

Context: Top 50-100 search snippets for the question filtered for giveaways

[Dunn et. al, 2017]

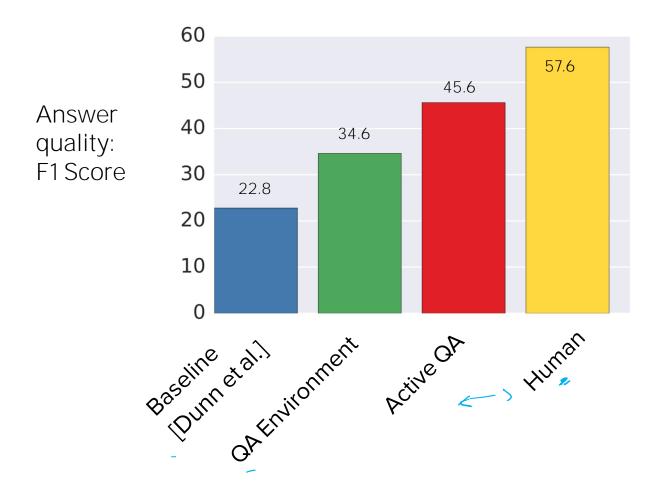
ActiveQA: Environment

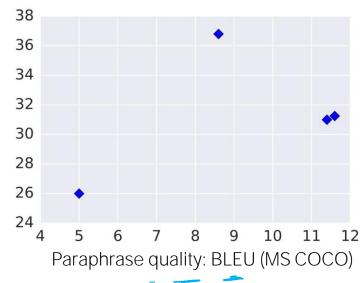


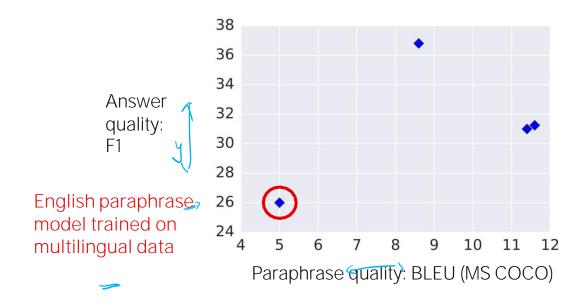
*Image from [Seo et al.2017]

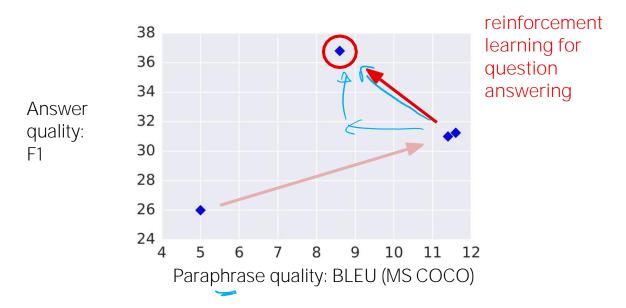
Results

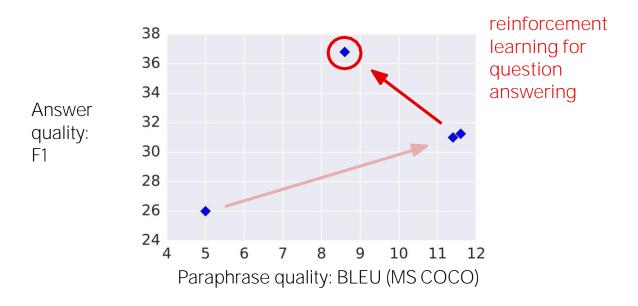
Results











- Input: type humorous poem bears name irish port city
- _____ Top reformulation: what is name humorous poem poem bears city city city

Research paper 2

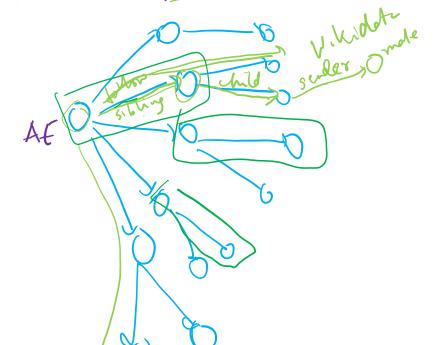
Go for a Walk and Arrive at the Answer:

Reasoning over Paths in Knowledge Bases

using Reinforcement Learning

MINERVA: Task in KG Removing

I/p: relation + start entity AE 0/p. best peth

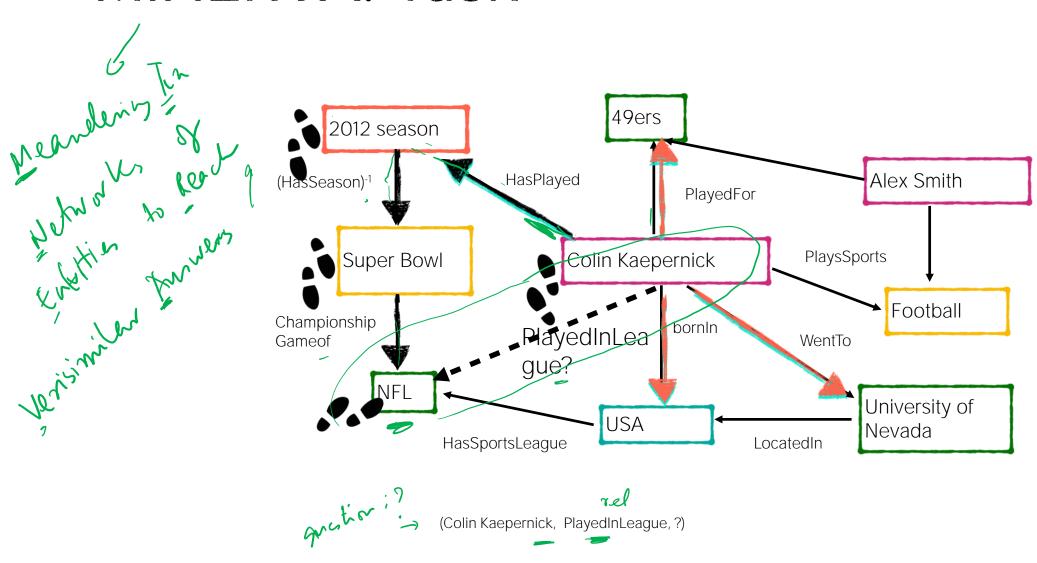


· KGR ~ 9A

SE -> NERD

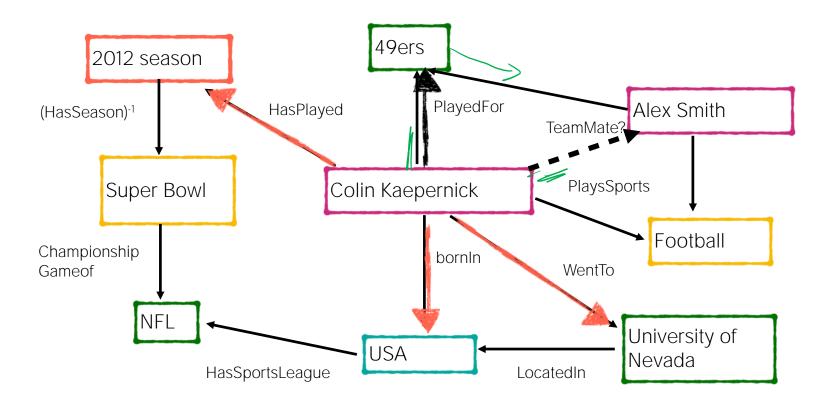
Jornletton

MINERVA: Task



Thanks to Rajarshi Das for the slides

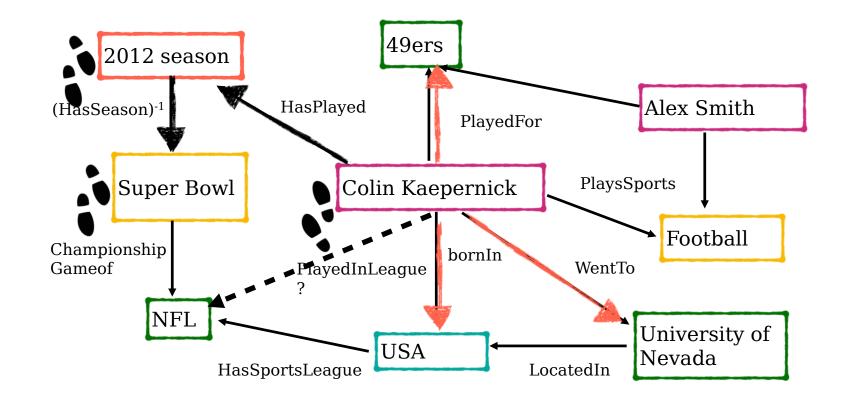
MINERVA: Task



(Colin Kaepernick, TeamMate/Co-Worker,?)

Query Dependent Decision Making!

MINERVA: Model

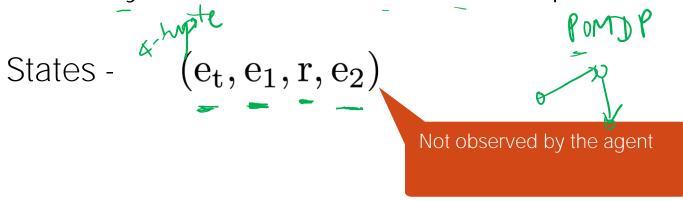


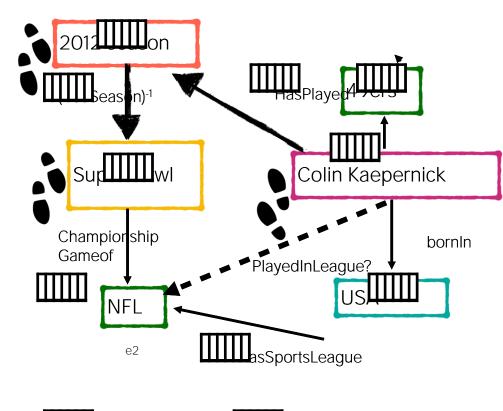
(Colin Kaepernick, PlayedInLeague, ?)

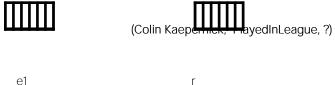
MINERVA: Model

• Input - (Colin Kaepernick, PlayedInLeague, ?)

Partially Observed Markov decision process







MINERVA: Policy

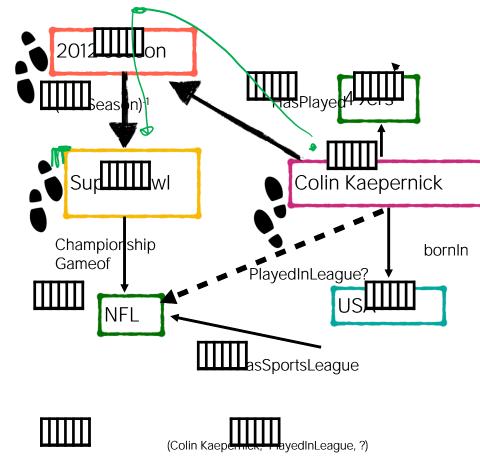
Input - (Colin Kaepernick, PlayedInLeague, ?)

Partially Observed Markov decision process

States -
$$(e_t, e_1, r, e_2)$$

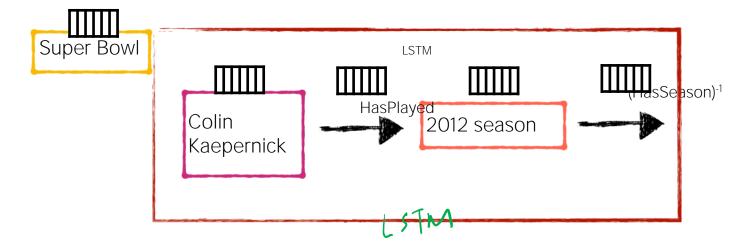
Policy

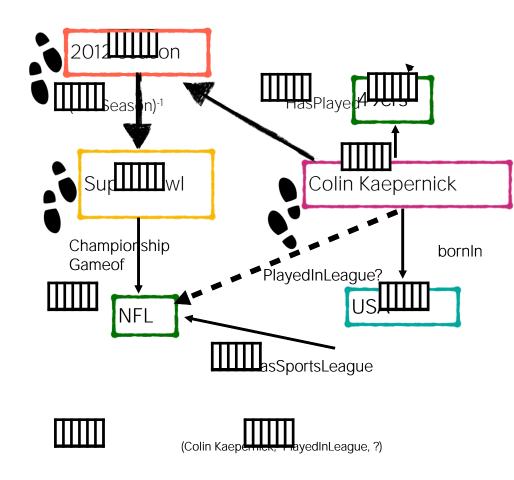
- Randomized & *history* dependent



MINERVA: Policy

History

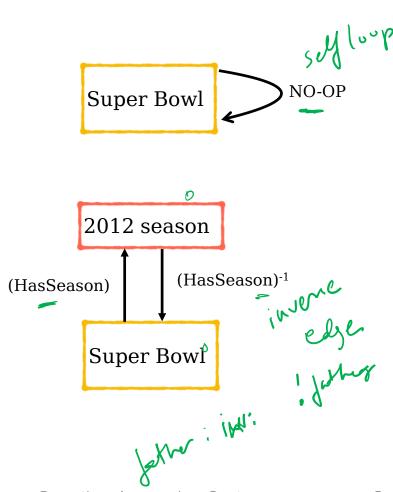


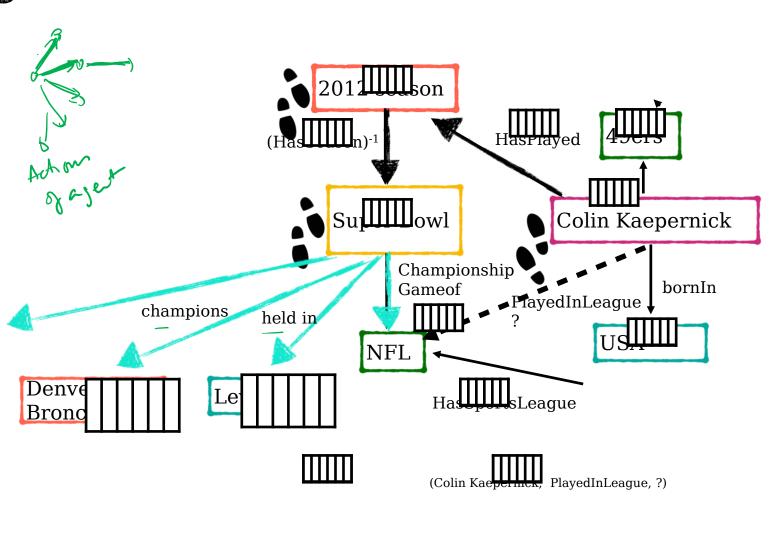


07 July 2020

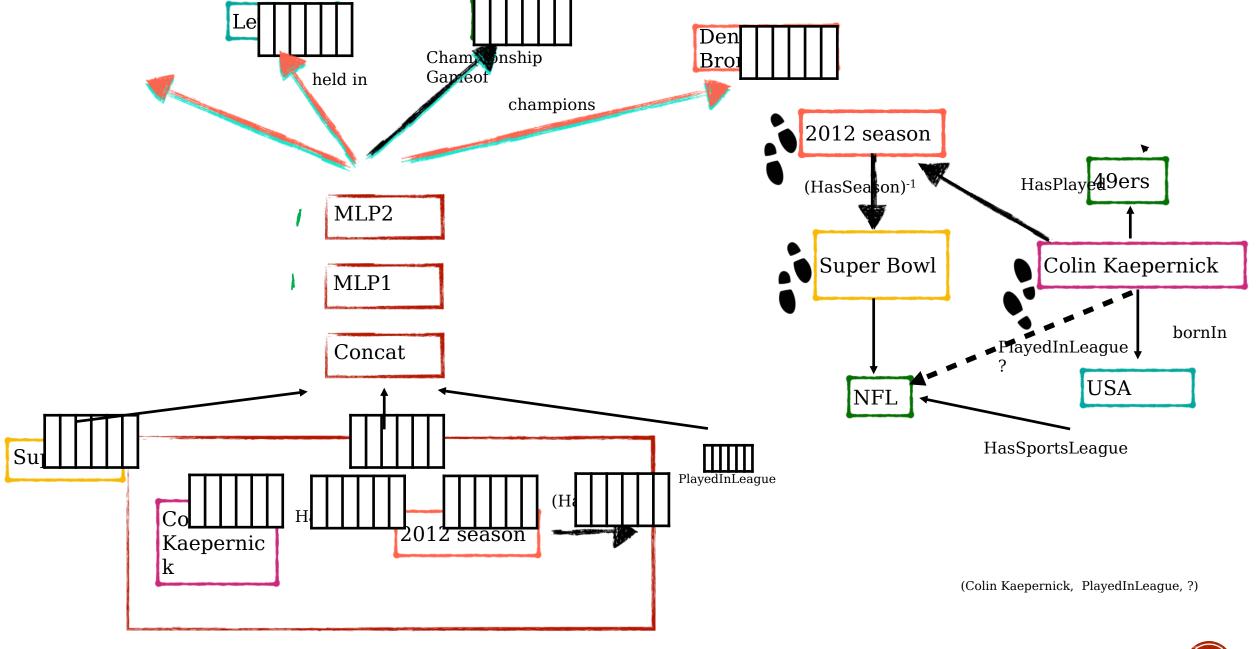
MINERVA: Actions

All possible outgoing edges



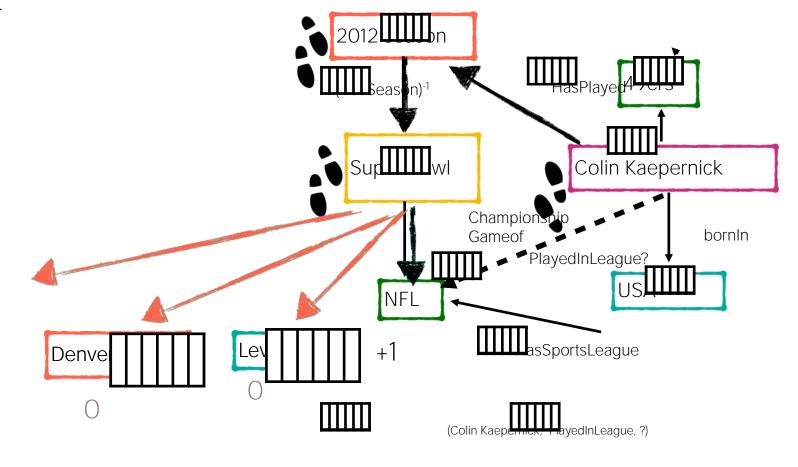


07 July 2020



MINERVA: Rewards

 $R = \{+1 \text{ if we reach the answer}\}$ 0, otherwise}



MINERVA: Training

$$J(heta)=\mathbb{E}_{(e_1,r,e_2)\sim D}\mathbb{E}_{A_1,..,A_{T-1}\sim\pi_{ heta}}[R(S_T)|S_1=(e_1,e_1,r,e_2)]$$

Trained using Policy Gradients

$$\nabla_{\theta} J(\theta) \sim \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \nabla_{\theta} \pi(a \mid s, \theta)$$
 (Sutton, McAllester, Singh, Mansour, 2000)

Monte Carlo Policy Gradients

$$\theta \leftarrow \theta + \alpha G_t \nabla_{\theta} \log \pi \left(A_t \mid S_t, \theta \right)$$
 (Williams, 1992)

Monte Carlo Policy Gradients with Control Variates

$$\theta \leftarrow \theta + \alpha \left(G_t - b(S_t) \right) \nabla_{\theta} \log \pi \left(A_t \mid S_t, \theta \right)$$

$$P(A_t) = \left(P(A_t \mid S_t) \right) - P(A_t) + \left(P(A_t \mid S_t) \right) + \left(P(A_t \mid S_t) \right)$$
 Entropy regularization to sample more diverse paths.

Programming assignment

- word Ever, DP, JERD, lassure Answer questions over toy KG and corpora
 - Free to use any tools and resources
 - I for fue
 - Video to demonstrate method and answering outputs
 - 10 dev and 10 test questions
- send me you've Joseph Drive Jones Jo Comment on strengths and weaknesses from error analysis on test set
 - Deadline: 21 July 2020, 14:00

Conclusions

- Reinforcement learning for QA has a high potential
- Many possibilities, not explored well yet
- Needs modeling: Agent, environment, rewards, states, policy, value
- Coercing answers from reformulated questions is a viable strategy for open-domain QA
- RL has showed success in KG reasoning

